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Automatic Word Recognition (AWR) syStem, using a CCD speech analyzer and
current microprocessor technology ? -,

To answer these questions , three speech snalysis techniques were implemented
with CCD analyzers. These techniques include a Discrete Fourier Transform
analysis, a Cepstral analysis, and a Bandpass Filter analysis. The CCD

3 analyzers were incorporated into a realtime laboratory AWR system based on
L" a dynamic programming match algorithm.

E

Speaker dependent word recognition experiments were conducted for a per-
formance comparison of the three CCD based speech analysis techniques.
The data base used in the recognition experiments was based on two vocabu-
laries of 26 and 20 words recorded by eight different speakers. Results §
indicated that the Bandpass Filter CCD analyzer provides the best parameters
for isolated word recognition. A recognition accuracy of 99.4% was achieved
on a 20 word vocabulary. The experiments showed that CCD speech analyzers
; can provide speech parameters which are useful for accurate realtime word
recognition. 3.

)* Experiments were Q.lso'conducted to measure the speed versus accuracy
tradeoffs of four speed-up techniques. The techniques were demonstrated to
‘ be worthwhile in an efficient realtime AWR system.

Finally, microprocessor architectures were designed to implement the real- {4
time AWR system and then evaluated in terms of cost and complexity using
three different microprocessors: the 8-bit Intel 8085A, the 16-bit Motorola

MC68000, and a 16-bit configuration of the AMD 2901A.{)f the three, the
AMD 2901A proved preferablé from both a cost and a performance standpoint.
Hardware cost projections for an AWR system featuring an AMD 290IA archi-
tecture and a Bandpass Filter CCD analyzer indicate that the hardware com-
ponents for such a system should range between $1,500 for a 52 word vocabu-
lary, to about $12, 700 for a 780 word vocabulary. These costs do not include _
custom chip development, detailed hardware design, construction or testing. |

ITTDCD is very encouraged by the results obtained in this investigation. It .
does appear that an accurate, low cost AWR system could be developed using
a CCD speech analyzer and a microprocessor recognition system.
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EVALUATION

This contract was in support of TPO RIB, Signal Intelligence.
Speech processors havg applications to Air Force problems of data entry,
secure personnel entry, communications, and intelligence. This effort
determined the feasibility of using CCD and microprocessor technology
for speech processors, in order to obtain significant reductions
in cost, size, weight, and power consumption. Additional work is

programmed to refine algorithms and hardware, and to construct a

breadboard Automatic Speech Recognition Systeii.

}//':/4 /f MW/ }4,
MELVIN G. MANOR, Jr.
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Chapter 1: EXBECUTIVE SUMMARY

This document is the final report from ITIDCD to RADC on Contract
Number  F3062-78-C-0359, entitled Solid State Audio/Speech Processor
Analysis. This report details the progress made by ITIDCD in evaluating
the feasibility of applying Charge Coupled Devices (CCD'S) and
microprocessors to reduce the cost and complexity of Automatic Speech
Recognition (ASR) systems. ASR systems have the potential of solving many
Air Force cammand, control, and caommnication problems. The report answers
two basic questions. First, can OCD devices be used to generate speech
recognition parameters that are useful for accurate low cost speech
recognition? Second, what would be the cost and complexity for a realtime
Automatic Word Recognition (AWR) system, using a (CD speech analyzer and
current microprocessor technology?

To answer these questions, ITIDCD studied four speech analysis
techniques. These techniques include a Discrete Fourier Transform (DFT)
analysis, a Cepstral analysis, a Bandpass Filter (BPF) analysis, and Linear
Predictive Coding (LPC). To provide more realistic data for performance
assessment, the first three techniques were implemented using actual OCD
hardware. For each of these COCD analyzers, software was developed to make
the respective speech parameters more suitable for realtime word
recognition.

ITIDCD then incorporated the CCD hardware and software into a realtime
laboratory AWR system. The major hardware components of this system
include the CCD speech analyzers, a Quintrell signal processor, a PDP-11/60
minicomputer, and two display terminals. Realtime word recognition
software was developed for the Quintrell processor, a .high speed signal
processor originally designed by ITTDCD for narrowband speech transmission
systems. The word recognition software is based on a dynamic programming
match algorithm to provide effective time normalization. The laboratory
AWR system was designed to meet the performance goals of the ocontract:
realtime response on a 20 word vocabulary with better than 99% word
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recognition accuracy in a speaker dependent mode.

ITTDCD employed the laboratory AWR system to conduct a series of word
recognition experiments. These experiments were designed with the intent
of camwparing alternative word recognition techniques and algorithms, rather
than demonstrating the maximum achievable accuracy of a realtime AWR
system. The data base used in the recognition experiments was based on two
vocabularies of 26 and 20 words recorded by eight different speakers.

A first group of experiments was designed and conducted for a
performance ocomparison of the three OCD based speech analysis techniques.
Results cbtained from these experiments clearly indicated that the Bandpass
Filter CCD analyzer provides the best parameters for isolated word
recognition. The laboratory AWR system was also used as a test vehicle for
a secord group of experiments measuring the speed versus accuracy
tradeoffs of four speed-up techniques. All four of the speed-up algorithms
which were studied were demonstrated to be worthwhile in an efficient
realtime AWR system. A third group of experiments provided an additional
performance evaluation of the Bandpass Filter AWR system. A recognition
accuracy of 99.4% was achieved on a 20 word vocabulary, thus surpassing the
contract performance goal. Owverall, the experiments showed that OCD speech

analyzers can provide speech parameters which are useful for accurate
realtime word recognition.

Finally, ITIDCD designed and evaluated architectures for
microprocessor based versions of the realtime AWR system. The
microprocessor architectures were evaluated in terms of cost and complexity
for solving various isolated word recognition problems using three
different microprocessors: the 8-bit Intel 8085A, the 16-bit Motorola
MC68000, and a 16-bit configuration of the AMD 2901A. Of the three, the
AMD 2901A proved preferable from both a cost and a performance standpoint.
Hardware cost projections were then made for an AWR system featuring an aMD
290]A architecture and a Bandpass Filter OCD analyzer. ‘These projections
indicate that the hardware components for such a system should range
between $1,500 for a 52 word vocabulary, to about $12,700 for a 780 word
vocabulary. These costs do not include custom chip development, detailed

~10-




hardware design, construction or testing.

ITIDCD is very encouraged by the results obtained in this
investigation. It does appear that an accurate, low cost AAR system could
be developed using a CCD speech analyzer and a microprocessor recognition
architecture. A logical next step would be to proceed with the detailed
design, construction, and testing of a deliverable version of such an AWR
system. The system could then be evaluated at an actual Air Force
laboratory or operational site.
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Chapter 2: INTRODUCTION AND TECHNICAL OVERVIEW

This report details the progress made by ITIDCD in evaluating the
feas@bil%,ty of applying Charge Coupled Devices (CCD'S) and microprocessors
to improve the cost, size, weight, and power consumption of Automatic
Speechi Recognition (ASR) systems. ASR systems have the potential of
solving many Air Force command, control, and communication problems. For
many applications, however, such factors as cost, size, and power must be
reduced. The report answers two basic questions. First, can OCD devices
be used to generate speech recognition parameters that are useful for
accurate low cost speech recognition? Second, what would be the cost and
complexity for a realtime Antomatic Word Recognition (AWR) system, using a
CCD analyzer and current microprocessor technology?

Four tasks were carried out to answer these questions. In the first
task, simulation studies were performed on an existing Automatic Word
Recognition (AWR) system to develop speech recognition algorithms suitable
for low cost microprocessor implementation. This task also provided
experience with four speech processing techniques using data from simulated
QCD analyzers. ‘These techniques are Linear Predictive Coding (LFC), a
NDiscrete Fourier Transform (DFT), a Cepstral analysis, and a Bandpass
Filter analysis (BPF). In the second task, a realtime laboratory AWR
system was designed and implemented on a Quintrell processor. This 1is a
special purpose ITTDCD developed signal processor based on a AMD-2901
microprocessor. It can perform a full LPC analysis/synthesis in
approximately one-half realtime. The AWR system used CCD analyzers to
provide speéch parameters, and was designed to meet the performance goals
of the contract: realtime resoonse on a 20 word vocabulary with better than
99% word recognition in a speaker dependent mode. The third task was to
use this realtime AWR system to compare the recognition performance of
actual OCD analyzers. In the final task, a component analysis of the
realtime AWR system was performed to determine the speed/accuracy tradeoff
of various parts of the recognition algorithm, the projected cost of the
OCD hardware analyzers, and the cost and complexity of a microprocessor

-12-




implementation of the system.

This work was enhanced in two ways by an ITIDCD IR&D program that
focused on developing low cost speech recognition systems. First, the IR&D
program developed the CCD analyzers and supporting realtime software. The
availability of real CCD analyzers, though not necessary for completing
this contract, permitted a more realistic camparison of CCD technology than
could have been done with simulated data alone. OCD hardware was built for
three of the speech processing techniques. (The LPC analysis was not
implemented in hardware.) Second, a detailed microprocessor architecture
study of the AWR system was conducted under IR&D for three microprocessors.
These designs were evaluated in terms of cost and complexity for vocabulary
sizes of up to 780 words.

The CCD hardware, the realtime laboratory AR system, and the results
of recognition experiments are discussed in subsequent chapters. The
remainder of this chapter gives a technical overview of the ITIDCD AWR
system, the speech processing techniques, and the test paradigm used
throughout the study. Finally the simulation studies are discussed as
background to the following chapters.

2.1 Overview of the ITIDCD Automatic Word Recognition System

Figure 2.1 shows a simple block diagram of the ITTDCD AWR system.
Analog speech undergoes a parametric analysis to derive speech parameters
that accurately describe the sounds present in each spoken word. These
parameters are sampled periodically (usually evefy 10 to 25 ms) to produce
"frames™ that represent the time variation of the input. For this
contract, CCD analyzers were evaluated for their ability to perform this
speech analysis step. Separation of the parametric analysis from the rest
of the recognition process is not only natural, but it also permits
developing the AWR system independent of any particular speech analysis
technique. In addition, the same AWR system could be used for each OCD
analyzer technique to insure a valid comparison.
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The beginning and end of each word is found in the endpoint detection
step by using an energy function derived in the parametric analysis. The
word beginning is detected by summing a clipped energy function over about
200 ms. The energy function is clipped to prevent a high energy burst
(e.g., lip smack) fram triggering a false speech detection. Speech is
detected when the sum passes a set threshold, and the beginning of the
speech is marked as the first point in the 200 ms window where the energy
is greater than a "silence" threshold. The word end is similarly detected
when about 100 ms of the energy function remains below the "silence"
threshold.

An unknown word is recognized by comparing it to the set of reference
templates representing the vocabulary of the system. A template is
generated by speaking the wvocabulary word once and storing the parametric
representation of the word as a template. The comparison between each
template and unknown is performed with a non-linear time aligmment process
carried out by the dynamic programming match algorithm (discussed in the
next section). The identity of the template best matching the unknown word
is the system's response.

2.1.1 Dynamic Programming Match Algorithm

Non-linear time alignment between a word template and the unknown word
is necessary to account for the natural time variations between different
utterances of the same word. Figure 2.2 illustrates how a non-linear time
alignment between a template and an unknown 1is achieved with dynamic
programming. The time frames of the template on the y-axis and the time
frames of the unknown on the x-axis form a matrix of frame-to-frame cells.
(A dotted line is shown on the figure for every five frames of speech.) The
piece-wise linear 1line cutting diagonally across the matrix shows one of
many possible non-linear time alignment paths. The match score of the path
is equal to the sum (or weighted sum) of the frame-to-frame "sound
similarity” scores for each cell along the path. One camon "sound
similarity®” score between the parameters of a template frame and the
parameters of an unknown frame is simply the PBuclidean. Dynamic
programming finds the "best" non-linear time alignment path within set

-15-
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constraints by finding at each time cell (i,j) the best partial path in the
three adjacent cells to extend to (i,j) as shown in the figure. This
process begins in the lower left corner and continues up one column at a :
time until all of the unknown utterance is processed.

The particular dynamic programming algorithm used by the ITIDCD AWR
system is one studied by Sakoe and Chiba [1]. Each path through the
dynamic programming matrix is constrained so that a diagonal step has to be .
e taken after a horizontal or vertical step. This constraint has the effect
of restricting the slope of a path to be between one-half and two. Thus, |
the length of the spoken word must be between one-half and twice the length
of its template. In addition, the constraint prevents more than two frames
of the unknown word to be matched against one frame of the template and

vice-versa.

Dy N | g

The dynamic programming equation below shows how the scores of the
partial paths ending at times (i-1,j), (i,3-1), and (i-1,j-1) are compared
to see which path is the best one to extend to time (i,j).

-X $i3 = min (Sj-1,§ +d, Si,j-1 +d, Si-1,5-1 + 20

where

Sij is a partial path score at cell (i,j)
d is the Buclidian distance for cell (i,3)

R A

The constraints given above are used in conjunction with this equation to
see which path is extended. The final path score is normalized by dividing
by the sum of the lengths of the unknown and the template to yield a match
score that can be compared across all templates.
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2.1.2 Rlgorithm Speed-up and Storage Reduction Techniques

The dynamic programming recognition algorithm as presented above
places a large coamputational burden on the AWR system. Also, the
parametric frame representation of speech requires considerable data memory
for template storage. less expensive recognition algorithms exist and more
camact data representations have been used, but with a corresponding
degradation in performance. ITIDCD elected to use the more accurate
algorithm and representation, and to depend on other techniques to reduce
the computational and memory requirements. Four techniques were
investigated: orincipal component dimensionality reduction, variable frame
rate encoding, corner pruning, and template pruning. The first two
techniques reduce the data rate resulting from the speech analysis and
therefore reduce both the computational and storage burden on the system.
The second two techniques of corner and template pruning reduce computation
by 1limiting unneccessary matching in the dynamic programming algorithm.
These techniques are described in the paragraphs below.

2.1.2.1 Principal Component Dimensionality Reduction

The n coefficients of each frame of speech from a front end analysis
technique define a point in an n-dimensional feature space. The
dimensionality of this feature space can be reduced while minimizing any
reduction in the variation described by the speech data by the method of
principal component analysis [2]. Pols first applied this analysis to
speech recognition [3]. In the anaiysis, the variances along each
dimension, as well as the covariances between the dimensions, are
calculated over a large sample of speech data. The eigenvector of the
covariance matrix with the largest eigenvalue defines a dimension in the
original feature space which accounts for as much of the variance as
possible. The eigenvector with the next largest eigenvalue defines a new
orthogonal dimension which accounts for as much of the variance as possible
that was not accounted for by the first eigenvector. Thus a set of m
eigenvectors (m<n) can be found which account for a high percentage of the
variance of the speech data. A point in the n-dimensional feature space is

mapped to the reduced feature space by maltipling the n-coefficient frame
vector by the n-by-m eigenvector matrix. The resulting m-coefficient frame
vector requires less data memory to store and less computation when it is
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camwpared against other frame vectors in the dynamic programming algorithm.
2.1.2.2 Variable Frame Rate Encoding

Variable frame rate encoding achieves data reduction by reducing the
number of frames in each template and unknown. This again reduces the
amount of data memory required for storing templates and also reduces the
size of the dynamic programming matrix. Variable frame rate encoding
reduces the number of frames in areas where the speech features change
slowly (e.g. in sustained sounds like vowels), but retains more frames in
areas where the speech features change more rapidly (e.g. liquids ard
stops). This is accomplished by simply comparing (via a Euclidean distance
metric) the next input frame to the last frame retained. If the new frame
is quite similar to the last frame according to a set threshold, the new
frame is rejected. However, if the new frame is different from the last
frame, the new frame is passed on to the next step in the analysis process.

2.1.2.3 Corner Pruning

Figure 2.3 illustrates dynamic progranming with corner pruning (the
shaded oportion). Corner pruning eliminates, with a minimum of added
software, those frame-to-frame comparisons which are not part of a good
time alignment path. The width of the remaining band in the dynamic
programning matrix (measured by the number of horizontal frames across the
band) can be adjusted to obtain the greatest decrease in computation costs
while maintaining the same recognition performance. Obviously, if the
bandwidth is too narrow, the best alignment path is cut off and performance
suffers.

2,1.2.4 Template Pruning

In template pruning, as the unknown word is pro;:essed, the partial
match scores of the templates are compared. If the partial match score of
a particular template is sufficiently worse (according to a threshold) than
the best partial match score over all the templates, that template is
pruned. Recognition continues on the reduced set of templates. This is
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illustrated in Fiqure 2.4. For each frame of the unknown utterance (time
j), the score of the best partial path of a template t ending in time j is
identified by finding the minimum score, ¢, of the colum. If for some
template t, . is greater than Ry (the minimum for all templates) by some
constant threshold C, then template t is pruned. This method of template
pruning is similar to one used by Itakura [4].

2.2 Speech Analysis Techniques

Four speech analysis techniques were investigatcd as alternative first
stages in speech recognition systems. These techniques included Linear
Predictive Coding (LPC), Bandpass Filtering (BPF), Discrete Fourier
Transform (DFT), and Ceps(:ral analysis. They all accept analog speech
(time damain data) as input and produce signal parameters for each time
frame that are used to represent a smoothed approximation of the speech
spectrum. The lower plot of Figure 2.5 shows a speech spectrum for the
vowel in "heet". The rapid oscillations of the plot are due to the pitch
harmonics, whereas the overall shape of the plot is due to the shape of the
vocal tract and is therefore characteristic of the sound being generated.
To be useful for speech recognition, the spectrum must be smoothed so that

. the signal parameters most closely represent the sounds generated by a

speaker and not the pitch of his voice.

2.2.1 Linear Predictive Coding

Linear Predictive Coding (LPC) analysis approximates the speech
spectrum by an all pole model. The smoothed line shown in Figure 2.5 is an
all pole approximation of the spectrum. The number of poles used in the
model (generally between 8 and 14) determine how closely the model
approximates the spectrum. Unique in LPC analysis is the fact that the
model most closely matches the spectrum at the higher enerqys, i.e., at the
vocal tract resonances, or formants of the spectrum. Thus LPC analysis can
correctly model formants that are close together, while smoothing the
spectrum between formants. This is gererally not true for the other
analysis techniques studied here. LPC analysis works best for the spectrum
of non-nasalized voiced sounds. The spectrum of nasals contain zeros which

-21-~

T, RTINS <+ PRI




_lllnul._—ll.llluv_ lllll _ll.Il“.lll - T 7
|
| | | | | |
" m | § I '
| | | | {
O e B s
! | | _ | !
“ _ ! ~ m
_ _ _ g | “
R B ey nE e
l | | | ; | —
“ | ! 8- !
I I I
| I“ ! =Y “ ]
b —— e e . — W~ JRRPUTE YRGS IR U VT
| “ |". I..“.I a I“. 4 .
| !
! ! | BERRIR 283333
| _ | | | l
wl ||||| _ lllll — ll-.lu“ll ‘ITIIII—llI"L.
| ! | | !
| ' ! | I
bk ——— e ———
] | [ 1 !
g _ . . “
! | I _ _
1 _ ! _
AR Bt i St Mt
! _ [ "
] | ! |
| | | |
l | | 1
PS oot ae w n

saures ] awr], arerdwa

Unknown Utterance Time Frames

Figure 2.4 Dynamic Programming Matrix with Template Pruning

~22-

R

&

Y
R} 5




.399¢,, Ul [dmOoA 2yl JOj wnljoadg yoaadg Gtz embrd
ZzH ut Aousnbsig
00SP 000F 00s¢e 000¢ 00S2 000¢ 00S1 0001 00S 2
, | ] | | | | - .. | } |
{ T ! f ! i ¥ I i i ~=
b N
-+
-
m -
no...rnl

ol

T T T e

0t

0¢

0¢

ov

0S

09

04

8P Ut @pnintduy aaneay

-23-




cannot be correctly modeled by an all pole model. The LPC coefficients
modeling two spectra are typically campared in speech recognition using the
Itakura "log ratio of LPC residuals" [4].

2.2.2 Bandpass Filtering

Bandpass Filtering (BPF) analysis converts the speech spectrum into a
vower spectral density representation. The number and width of the bands
determine the smoothing of the spectrum. By careful selection of the
filter bands, variations due to pitch harmonics are avoided and the
"critical bandwidths" of the ear are approximated. BPF coefficients from
two different sounds can be compared using a Buclidean metric.

2.2.3 Discrete Fourier Transform

A Discrete Fourier Transform (DFT) analysis for speech generally has
between 128 and 512 speech samples per transform. DFT coefficients,
however, are seldom used directly. Rather, the coefficients are used to
produce a power spectral density representation like that obtained by
bandpass filtering. Each "bandpass filter" is obtained by summing a set of
frequency adjacent DFT coefficients. BAgain a Buclidean metric is used to
compare the representations of different sounds.

2,2.4 Cepstral Analysis

The cepstrum is defined as the Fourier transform of the logarithm
nower spectrum. In order to understand what the cepstral coefficients
represent, consider again the spectrum of Figure 2.5. If this spectrum is
treated as a time domain signal and processed by a Fourier transform, the
resulting low "frequency" components (called quefrency components) will be
related to the overall shape of the power spectrum, and the high
"frequency" components will be related to the pitch harmonics of the power
spectrum, These quefrency components of the transform of the power
spectrum are called cepstral coefficients. In speech recognition, only the
low quefrency cepstral coefficients are used in order to "smooth"™ out the
~itch harmonics of the spectrum.
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Cepstral coefficients have been used by several investigators [5,6]
and have been reported to be equal to the best, if not superior to, the
other techniques for encoding speech for recognition purposes. Cepstral
coefficients are usually used with a Buclidean distance function to yield
the "sound similarity" between two speech sounds. It was shown by Gray and
Markel (7] that this is equivalent to measuring the BEuclidean distance in
the log RMS spectral power domain. Using only the low quefrency cepstral
coefficients in the distance function 1is equivalent to measuring the
Buclidean distance in a smoothed log RMS spectral power damain. In other
words, the cepstral analysis in its preferred form differs only in minor
ways from the Fourier transform and bandpass filter approaches.

In developing these speeéh analysis techniques for CCD implementation
there are two questions of concern: How accurately do each of these signal
parameterizations represent speech at a given data rate, and how effective
is the OCD approach to computing these parameters?

The answer to the first question, how "good" are the four
representations, deperds on how they are implemented in a speech
recognition system. There is no universally agreed upon "proper way" to
yse these representations. We have implemented them using generally
accepted principles, which we think are the best for the given constraints.
Our conclusion is that three of the four technigues (BPF, DFT, and
Cepstral) produce speech parameters that are essentially equivalent, or can
be made equivalent, in theory. In practice, differences will arise
because of the differing effects of time windowing, dynamic rarge, and
number of equivalent bits of accuracy in the internal operations of the
devices.

The second question, how effective is the CCD approach in each case,
is the topic of the next chapter.




2.3 Experimental Test Paradigm

The word recognition tests used for testing algorithms and for
comparing CCD analyzer processing techniques are speaker dependent, with

each speaker using simple one word templates. For each test vocabulary, a ,
test speaker recorded the vocabulary five times. Each vocabulary ‘
repetition for that speaker was used in turn as a set of templates and

campared against the other four repetitions by the same speaker as test

utterances.

It has been well documented that template clustering and multiple
template techniques improve recognition performance (8]. Therefore the
results reported in Chapter 6 should not be taken to indicate the best
possible performance for the techniques studied, but rather only their

ey b

relative performance.
2.4 Developmental Simulation Studies

Two activities were undertaken to support the work that is reported in
the following chapters. First, the four algorithm speed-up techniques
described above were developed and studied on an existing AWR system ¥
implemented on a PDP-11/60. For speech analysis, this system used an LPC-

| 10 analysis program to obtain 10 LPC reflection coefficients every 22.5 ms.

During the algorithm speed-up development, the following effects were ;

: observed. Because of the large frame size in this system, Variable Frame
Rate Encoding was not very effective. Reducing an already slow frame rate
degrades vperformance. However, the technique could be helpful for a CCD | i

analyzer with a higher frame rate. i

Similarly, principal component dimensionality reduction was not very
effective for reflection coefficients. However, we expect that it might be
more effective for something like bandpass filter analysis, where the

coefficients are more highly correlated.




Corner pruning and template pruning showed gqreat promise in the
developmental studies. Approximately 60% of the dynamic programming matrix
could be ignored by corner pruning without significantly degrading the
performance. On the average, template pruning provided a 30% reduction in
the number of templates processed without significantly degrading
performance. ‘The actual effect of these techniques in the realtime AWR
system is discussed later.

The second activity of the developmental simulation studies was to
generate and test simulated OCD analyzer outputs. OCD simulations for the
four speech analysis techniques investigated in this contract were
generated under a subcontract with Dr. Bob Brodersen at the University ¢
California, Berkeley. An anlog tape of four speakers repeating a 26
phonetic word vocabulary five times was processed by the simulation
software at Berkeley. The resulting digital tapes were delivered to ITIDCD
for experimentation using the AWR system implemented on the PDP-11/60.

Only a small part of this simulated data (one speaker over all
techniques) was studied for the following reasons. First and foremost was
the fact that the actual hardware devices themselves were being constructed
under our IR&GD orogram. Results with actual hardware would be more
meaningful then that from a simulation study. However, the CCD simulation
data did enable us to become familar with the type of speech parameters
that the hardware would generate before it became available. Also, the
simulation data served as a backup in case the hardware development failed.
A second reason for limited testing of the simulation data was that at the
time of the testing the realtime AWR system had not yet been implemented.
The PDP-11/60 AWR system required considerable time to process the data.
Finally, problems were found with word endpoint detection in using the
simulated data. Although these problems could have eventually been
overcome, the required effort was not justified, once we decided to focus
our investigation on the hardware devices themselves.




To provide more realistic data for performance assessment, three of
the speech analysis techniques (BPF, DFT, and Cepstral) were implemented
using actual OCD hardware. In addition, for each of the devices, special
> purpose software was developed to make the respective speech parameters
' suitable for a realtimg recognition system. This chapter describes the
detailed design of each OCD analyzer and its associated software.

It is not currently possible to implement the fourth speech processing
technique, LPC analysis, in OCD hardware. The first step of the analysis,
namely the extraction of autocorrelation coefficients, was attempted in CCD
hardware by Dr. Brodersen at the University of California, Berkeley. The
autocorrelation ocefficients generated by this device proved
; unsatisfactory. However, recognition experiments were performed with
1 software generated autocorrelation and LPC coefficients. Results of these
experiments are presented in Section 6.2 for comparison with the other
three speech analysis techniques implemented in OCD hardware.

ot e b e el
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3.1 CCD Analysis Hardware

All three of the speech analysis techniques implemented in OCD .
hardware make use of Reticon OCD devices. Two of the techniques (DFT and ' !
Cepstral) share a Reticon spectral analyzer board and are contained in one i
hardware unit, while the BPF (CD analyzer is a separate unit.

3.1.1 Bandpass Filter Hardware

The Bandpass Filter (BPF) design uses nineteen switched-capacitor

»andpass f.{lters to cover a freguency range of 100 Hz to 9500 Hz. Six

RS5604 inteq'i:ated circuits are used for eighteen 1/3 octave filters, and one

R5606 integrated circuit is used for a full octave filter covering the

{ higher frequencies. Figure 3.1 shows a block diagram of the BPF CCD
analyzer.
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The speech input is amplified, anti-aliased by a lowpass filter, and
then pre-emphasized by a 6 dB/octave slope beginning at 500 Hz. The signal
is then filtered by two switched-capacitor lowpass filters with cutoffs at
1.4 kHz for the lower frequency bandpass filters and 10.5 kHz for the
higher frequency bandpass filters. These lowpass filters act as anti-
aliasing filters to the bandpass filters. The output of each bandpass
filter is processed to obtain an approximation to the smoothed RMS value by
half wave rectification followed by a 30 Hz lowpass filter. The 19 analog
signals are simultaneocusly sampled and held once each 10 ms, ¥hen they are
multiplexed into a single logarithmic A/D converter to produce 19 eight-bit
values every 10 ms. The frequency characteristics of each filter are
presented in Table 3.1.

3.1.2 Discrete Fourier Transform and Cepstral Hardware

The Discrete Fourier Transform (DFT) analyzer and the Cepstral
analyzer share a Reticon RC5601 spectral analyzer board which is based on
the RS5601 chirp Z transformer (CZT) . The RS5601 is an MOS intergrated
circuit which performs the bulk of the computation required to calculate a
512-point DFT. The circuit conta.ins two separate 512-point OCD's which are
used to implement four transversal filters using the split-electrode
weighting technique.

The block diagram of Figure 3.2 illustrates the DFT and Cepstral
analyzers. The speech input is again preprocessed by amplification, anti-
aliasing filtering, and pre-emphasis. The speech is then processed by the
OCD spectrum analyzer, which is driven by a 20 kHz clock to obtain 512
Fourier magnitude‘ coefficients every 25.6 ms. Switch 1 is then placed in
either the log or linear position, depending on whether cepstral (log
position) or Fourier (linear position) processing is desired. The
logarithm is calculated in an Intersil 8048 logarithmic amplifier. This
bipolar device uses the exponential characteristics of a diode to vield a
logarithmic transfer characteristic. Unfortunately the device is sensitive
to offsets as well as having a rather high noise level. To alleviate some
of the offset problems, DC offset controls were added to the input and
output of this device. In the bypass path (linear position of S), there
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Table 3.1 Characteristics of the 19 Channel CCD Filter Bank

Low High
Frequency Frequency
Cutoff Cutoff Center
Filter (-3 dB) _ (-3 dB) Frequency Bandwidth
] 1 100 126 : 111 26
2 126 156 141 30
3 156 200 178 44
4 200 252 223 52
5 252 308 280 56
6 308 400 354 92
7 400 504 447 104
8 504 618 561 114
9 618 800 709 182
10 800 1008 894 208
11 1008 1228 1118 220
12 1228 1600 1414 372
13 1600 2016 1788 416
‘ 14 2016 2456 2236 440
15 2456 3200 2806 744
16 3200 4032 3576 832
. 17 4032 4912 4472 880
o 18 4912 6400 5612 1488
ﬁ 19 5000 9500 7250 4500 2
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is also an offset control to obtain a DC ocutput voltage compatible with the
log amplifier path.

The original design of the CCD Cepstral analyzer required another CCD-CZT
Fourier transform stage after log amplification to obtain cepstral
coefficients. It was found, however, that the signal coming from the log
amplifier could not survive another analog COCD-CZT stage and still be
useful for speech recognition. The solution was to complete the cepstral
analysis in software after the signal was digitized. An A/D converter
accamplishes the digitization for both the linear and log spectrum signals.
It is driven by a 5 kHz clock to obtain 128 spectral values per frame at
the digital output.

3.2 CCD Analysis Software

The outputs of each of the CCD analyzers require additional processing
to vyield speech parameters that are more suitable for a low cost, realtime
AWR system. This processing provides more effective recognition parameters
and reduces their data.rate so that memory and processing requirements can
be minimized for an AWR system. In the case of the Cepstral technique,
this processing is also needed to camplete the analysis, since it is not
possible to perform the final Fourier transform in OCD hardware.

3.2.1 Bandpass Filter Software
Figure 3.3 shows a block diagram of the software added to handle the

output of the BPF OCD analyzer. The first step reduces the 19 filter
channel outputs to 16 coefficients by summing the first three channels to

obtain the first coefficient and summing the next two channels for the
second coefficient. This procedure follows work done by Pols ([3]. 'The
carbination of these low frequency filters reduces the sensitivity of the
speech parameters to variations in the fundamental frequency of voiced
speech, by ensuring that there are always at least two harmonics of the
fundamental within each coefficient., An amplitude measure is also computed
at this point by summing all filter channel outputs.
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A new set of filter values representing a frame of data are produced
by the BPF analyzer every 10 ms. This data rate is then reduced by the
process of variable frame rate encoding discussed in the last chapter. The
distance threshold in this process was set to retain only about half of the

input frames.

Principal component dimensionality reduction is then applied to reduce
the 16 coefficients to 10 principal components. Multiplying the 16
coefficient frame vector by a matrix of 10 eigenvectors produces a new
vector of 10 coefficients which account for about 98% of the variance. ‘the
three steps of channel sumning, variable frame rate encoding, and principal
component dimensionality reduction, lower the original 15.2 kilobits/second
data rate to 4 kilobits/second for the BPF technique.

3.2.2 Discrete Fourier Transform Software

The data rate of the DFT CCD analyzer is higher than that of the BPF
analyzer. Every 26.5 ms, 128 eight-bit spectral values are produced by the
analyzer (38.6 kilobits/second). Figure 3.4 shows how this data rate is
reduced to 3 kilobits/second in two steps. The first step is again channel
suming. However, in this case, overlapping groups of channels are summed
in a manner that approximates a digital filter bank suggested by Klatt for
spectral matching of speech sounds [9]. Table 3.2 shows characteristics of
the resulting 32 channel filter bank. As with the BPF data, a principal
component transformation then reduces these 32 coefficients to 10
céefficients which account for about 93% of the variance in the data.

3.2.3 Cepstral Software

The cepstrum is defined as the Fourier transform of the logarithm
power spectrum. Typically the cepstrum is camputed in three stages: a DFT
of the signal produces an n-point power spectrum, then a lcy ozr.cion
produces an n-point logarithm power spectrum, and finally another DFT
produces an n-point cepstrum. As explained in Section 2.2.4, only the low
quefrency cepstral components of the cepstrum are normally used for speech
recognition, and we intended to use only the first 10 of these
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.2 Characteristics of the 32 Channel Filter Bank
Created from CCD DFT Samples

[%
Y
o
[
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WWWERN NNNNNNNNNN it

Center DFT
Frequency Bandwidth Samoles_
281 241 3-5
352 241 4-6
422 241 5 -7
492 241 6 -8
563 241 7-9
633 241 8 - 10
703 241 9 - 11
773 241 10 - 12
844 241 1 - 13
914 241 12 - 14
984 241 13 - 15
1055 241 14 - 16
1195 241 16 - 18 _
1336 241 18 - 20 {
1477 241 20 - 22 '
1617 241 22 - 24
1758 241 24 - 26
2074 452 27 - 32
2215 452 30 - 35 ,
2496 452 33 - 38 !l
2707 452 36 — 41 L
2918 452 40 - 45 %
3270 452 44 - 49 !
3761 452 48 - 59 ¥
4113 452 53 — 64 R
4465 873 58 — 69 3
4887 873 64 - 75 g
5379 873 71 - 82 4
5941 873 79 - 90 ;
6574 873 88 - 99 3
7277 873 98 - 109 1
8332 1366 109 — 128 i
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oefficients. Therefore the most efficient software replacement for the
final DFT stage of the cepstral analysis was not to perform a complete Fast
Fourier Transform (FFT), but rather to campute a partial Fourier transform
by convolving the log power spectrum with a set of 10 cosine transforms
[5]. Figure 3.5 summarizes these steps, and illustrates that the cepstral
analysis is realized by adding log amplification to the DFT signal within
the DFT analyzer, and then computing in software the dot products between
the 128 log DFT outputs and a set of 10 cosine tables.

While this type of cepstrz . representation has been sucessfully used
for recognizing words, Davis and Mermelstein have shown [5] that better
speech recognition is possible if the cepstral coefficients are computed
from a power spectrum based on a mel frequency scale. The mel frequency
scale represents the spectrum linearly between zero and 1000 Hz, but
logarithmically from 1000 Hz to the highest frequency covered (9000 Hz in
this case). The mel frequency scale is derived from perceptual data on the
frequency response of the human ear, and thus mel frequency spectral
coefficients should better represent perceptually relevant aspects of the
short-time speech spectrum than should linear frequency coefficients. In
order to obtain the best. possible performance with the cepstral CCD
analyzer, ITIDCD devised a method of obtaining "mel cepstral" coefficients
without altering the frequency scale of the OCD analyzer technique. Figure
3.6 illustrates how this is done. The cosine curves which are convolved
with the log power spectrum are stretched above 1125 Hz so that they cover
that part of the spectrum in a log manner. In addition (but not shown in
the figure), the individual cosine values along the stretched portion of
the curve are normalized by dividing by a value proportional to the amount
of stretching in that part of the curve. Thus equal parts of a cosine
curve contribute equally to the final ccefficient value, independent of the
amount of stretching that each part undergoces.

Each CCD analyzer and its associated software were develiped to
provide speech parameters suitable for realtime word recognition and
accordingly, each comprises a component in the realtime laboratory AWR
system which is described in the next chapter.
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Chapter 4: A REALTIME LABORATORY WORD RECOGNITION SYSTEM

As the secornd task of this study, ITIDCD implemented a realtime
laboratory HAWR system. The major hardware components include the OCD
speech analyzers, a Quintrell processor, a PDP-11/60 minicamputer, and two
display terminals. Realtime word recognition software was developed for
the Quintrell processor, a high speed sjgnal processor originally designed
by ITTDCD for narrowband speech transmission systems.

‘the system operates m three modes: a realtime recognition mode, a
template generation mode, and an experimental mode. This chapter provides
a description of the various components, configurations, displays, and
operating modes of our versatile laboratory AWR system.

4.1 System Oonfiguration

An overview of the various components of the AWR system 1is presented
in Figure 4.1. The system can be configured with any one of the three OCD
analyzers described in the preceding chapter. The software associated with
each CCD analyzer resides in the Quintrell processor, as does the
recognition software. Speech is input to the system via microphone or tape
recorder. The speech is parameterized by the CCD analyzer and passed on to
the Quintrell for further processing.

The syctem is controlled by the user from a PDP-11/60 display
terminal. The PDP and Quintrell cammunicate via the DR11-B, a high speed
direct memory access interface. PDP software controls this interface,
which is primarily used for transmittal of speech parameters in the form of
tenplates. PDP software also camputes principal component (eigenvector)
matrices and, in conjunction with the UNIX operating system, provides for
the storage and retrieval of speech templates on disk.
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4.2 Recognition Software

The core of the recognition software operates in the Quintrell
processor and is independent of a particular OCD analyzer. This software
is a realtime implementation of the dynamic programming algorithm described
in Section 2.1.1 and is depicted by functional flow in Figure 4.2. The
recognition process involves a comparison of parameters of the unknown word
to the parameters of a set of reference templates, each representing a
specific word. These comparisons are performed on a frame by frame basis
and account for the bulk of the computational load on the AWR system. The
role of the recognition software in the overall system is elaborated below
in a sequential description of the reccgnition mode.

At initialization of the recognition mode, a set of templates is sent
(on command) from the PDP computer to the Quintrell processor where they
are stored. If the system is configured with the BPF or DFT analyzer, the
eigenvectors associated with the template set are also transferred to the
Quintrell. The speaker then executes a "recognize” command from the PDP
terminal and says a word into the microphone. The speech signal is
parameterized by the selected CCD analyzer and sent to the Quintrell, where
the analyzer dependent processing described in Section 3.2 takes place.
The resulting speech parameters and energy function are then processed by
the recognition software on a frame by frame basis. The recognition
software monitors the energy function for detection of the beginning and
end of the utterance, and executes the dynamic programming algorithm.
When the end of the utterance is detected, the identity of the best
matching template is comunicated to the PDP and the recognized word is
displayed on the PDP terminal.

4.3 Operator Displays

buring the recognition mode described above, a graphic display is
continuously updated by the OQuintrell processor. An example of this
display is shown in Figure 4.3. Upon execution of a "recognize" command,
the energy profile of incoming speech moves from right to left across the
screen. As the beginning and end of the utterance are detected,. dots ' mark
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their locations on the display. The energy display is frozen when the end
of the utterance is detected.

The upper half of the display shows a series of 1lines of varying
lengths, one 1line for each resident template or vocabulary word. The
height of the line represents the relative match score of the template.
This part of the display is also updated throughout the recognition
sequence and is also frozen at the end of the word. The shortest line
represents the best matching template and is marked with a dot.

The second operator display is controlled by the PDP-11/60. At this
terminal, the "recognize" command is executed and the recognized word is
displayed. Moreover, it is this display which is used to configure and
control the modes of the laboratory AWR system. From this terminal, for
example, the user controls the settings of system variables and thresholds,
By a single command, the user may activate corner pruning and template
pruning. |

4.4 Template Generation Software

Template generation or training is the process by which the AWR system
vocabulary is generated for a specific speaker. Isolated words are input
to the AWR system via a tape recorder or microphone. In this mode, much of
the AWR system operates in the same manner as in the recognition mode.
There are a few major exceptions. No principal component transformations
are performed in the Quintrell for the BPF and DFT analyzers, and the
dynamic programming algorithm does not operate. When the end of an
utterance is detected, the speech parameters and energy function for the
entire utterance are sent to the PDP-11/60 where they are stored on disk.

After a set of DFT or BPF templates have been produced by a given
speaker, PDP software generates an eigenvector matrix from the source
templates. This matrix is then employed to perform a linear transformation
on each template, thus producing a new set of principal camponent
templates, one for each of the original templates. The principal camponent
templates are later used as reference templates in the Quintrell during the
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recognition mode.

For cepstral or mel cepstral analysis, no principal component
transformation is required. In this case, the same source templates
created in the template generation mode are used in the recognition mode.

4.5 Experimental Control Procedures

In the ocourse of this contract, a series of word recognition
experiments were oconducted for each of the OCD analyzers. The laboratory
AWR system was used in a slightly different fashion in the performance of
these experiments. This use of the system is described below.

Vocabulary words were recorded on analog tape and processed separately
by each OCD analyzer to produce recognition parameters for subsequent
recognition experiments. This process was the same as the foregoing
description of template generation. After templates had been generated
for the entire vocabulary, however, the OCD analyzers and their associated
software were no longer needed and were therefore inoperative during the
recognition experiments.

In a typical recognition experiment, one repetition of the test
vocabulary was sent from the PDP-11/60 to the Quintrell to serve as
templates. For the BPF and DFT analysis techniques, the principal
component transformation associated with that repetition was also sent to
the Quintrell. Then the source template parameters for a word from another
repetition of the test vocabulary were sent to the Quintrell to serve as
the unknown utterance. The recognition software identified the unknown
utterance and passed the identification buck to the PDP-11/60, along with
the best match scores for each of the resident templates. In like manner,
all the words in each vocabulary repetition (excepting the repetition being
used as templates) were sent to the Quintrell. The PDP-11/60 generated an
experimental file containing recognition statistics. ‘These statistics
included all template scores for each utterance as well as a tally of the
dynamic programming distance computations required during the course of the
exper iment.
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Chapter 5: SPERCH RECOGNITION DATA BASE

D A

During the ocourse of this contract, mmerous word recognition
experiments were performed on ITIDCD's laboratory AWR system. In this
chapter, the data base used for these experiments is defined, and pertinent
template generation procedures are discussed. The results of the word
recognition experiments are detailed in Chapter 6.

5.1 bata Base (ontent

The data base used in the recognition experiments is based on the two
vocabularies shown in Table 5.1. The first is a 26 word phonetic
vocabulary that has a distinctive word for each letter of the alphabet.
The second is a 20 word cockpit vocabulary, consisting of the ten digits
and ten control words that might be useful in an aircraft voice input
application.

Table 5.2 describes the three data sets that were constructed from
recordings of these two vocabularies. Data Set 1 consists of five
repetitions of the 26 word phonetic vocabulary by each of four speakers,
including two males and two females. Four new speakers (three males and
one female) recorded five repetitions of the 20 word cockpit vocabulary to
create Data Set 2. 'These same speakers also recorded five repetitions of
the 26 word phonetic vocabulary, producing Data Set 3.

As described in Section 2.3, all experiments with the AWR system were
performed in a speaker dependent manner by running all word recognition
trials for a particular speaker against a set of word templates generated
by the same speaker. Each vocabulary repetition was in turn used as a set
of templates and compared against the other four repetitions as test
utterances. This experimental paradigm yielded a total of 520 (5 * 4 * 26)
trials per speaker for Data Sets 1 and 3 and 400 (5 * 4 *20) trials per
speaker for Data Set 2,
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Table 5.1 Vocabularies Used for Automatic Word Recognition Experiments

26 Word Phonetic Vocabulary

_ Adam Henry Otto Victor
Baker Ida Peter Wwilliam
E Charlie John Queen X-ray

; David King Robert Young

; Edward Lewis Susan Zebra
- Frank Mary Thomas

?’ George Nancy Union

:

20 Word Cockpit Vocabulary

Zero Five Altitude Clouds
One Six Heading Descend
Two Seven Speed Course
Three Eight Vertical Frequency
] Four Niner Horizontal Kilometers

Table 5.2 Data Set Characteristics for Automatic Word Recognition Experiments

; Data Set Vocabulary Speakers Repetitions Tests
1 26 word MA (M) 5 520
Phonetic : MB (M) 5 520
FA (F) 5 520
FB (F) 5 520
2 20 Word BB (M) 5 400 H
Cockpit BL (M) 5 400
RS (M) 5 400 ‘
WB (F) 5 400 )
o
3 26 Word BB (M) 5 520 ;
Phonetic BL (M) 5 520
RS (M) 5 520
WB (F) 5 520




The exnerimental data base itself was created by processing the three
data sets through the laboratory AWR system operating in the template
generation mode. Data Sets 1 and 2 were processed three separate times by
the system, once for each of the three CCD analyzers. Data Set 3 was only
processed with the bandpass filter bank to provide additional test material
for that CCD analyzer.

5.2 Endpoint Determination

In a preliminary examination of the templates, a potential problem was
discovered. This problem involved the consistency of word beginnings and
ends across (CD analyzers. The beginning and ending detection for each
template had been determined by software algorithms, as described in
Section 2.2, Wwhile the same algorithm was used in all cases, the energy
function was computed independently for each CCD analyzer. This approach
resulted in occasional inconsistencies in endpoint detection for the same
utterance. An example of this problem is presented in Table 5.3, which
contains five repetitions of the utterance "Frank" for each of the three
CCD analyzers. Inspection of the energy profiles shows that the final
consonant "k" is missing from the third and fourth repetitions of the DFT
templates, and from the fourth repetition of the mel cepstral templates.
The full utterance is contained in all five of the BPF templates. Note
that each template was intentionally "padded" with the five frames
preceding the starting point and eight frames after the end of the
utterance, thus permitting the subsequent manual adjustment of endpoints
where needed.

We reasoned that it was unfair to compare the recognition capabilities
of the three analyzers with varying segments of speech for the same word.
Thus, we decided to manually specify beginnings and ends on any utterances
where the software determinations were inconsistent across CCD analyzers.
Of the 2760 templates generated from Data Sets 1 and 2, less than 3 &
required such manual specification, and no manual changes were made on Data
Set 3 templates. It also should be noted that in a few cases, an incorrect
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endpoint was deliberately specified in a template to make the template
consistent with missing speech parameters in a corresponding template for
another CCD analyzer. While such specifications definitely lowered

recognition rates somewhat, they also provided for a better comparison of
the three OCD analyzers.

The foregoing discussion of "manual®™ versus "automatically" determined

endpoints is intended to preface the next chapter, where experimental

results are presented. For each set of experiments, the type of endpoints
used is specified.
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Chapter 6: RESULTS FROM LABORATORY WORD RECOGNITION EXPERIMENTS

This chapter provides the detailed results of the word recognition
experiments performed in the course of this contract. Three major groups
of experiments were oconducted. The first series compared the word
recognition accuracies of the DFT, Cepstral and BPF CCD analyzers. The
second set of experiments evaluated the speed versus accuracy tradeoffs of
four speed-up techniques using BPF speech parameters. The third group of
exper iments provided an additional performance evaluation of the Bandpass
Filter AWR system. ‘

Each group of experiments was designed and conducted with the intent
of comparing alternative word recognition techniques and algorithms. None
of the experiments were intended to demonstrate the maximum achievable
accuracy of a realtime AWR system.

while all of the preceding chapters serve as background material for
these experiments, three previous sections are especially relevant to the
experimental framework: the experimental test paradigm discussed in
Section 2.3, the experimental control procedures of Section 4.5, and the
template endpoint discussion in Section 5.2,

6.1 Comparison Results for the CCD Analyz-ers
The OCD analyzers were evaluated by comparing their performance on the

laboratory AWR system. An initial set of experiments was conducted with
Data Set 1 to determine the relative performance of the cepstral and mel

cepstral analyses. These results are given in Table 6.1.
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Table 6.1 Cepstral and Mel Cepstral Word Recogniton
Accuracies with Software Determined Endpoints

Data Mel
Set Speaker Trials Cepstral Cepstral
1. 26 word MA (M) 520 91,0% 93.8%
Phonetic MB (M) 520 80.2% 92,7%
Vocabulary FA (F) 520 87.9% 94,.0%
FB(H) 520 94.28  94.6%

Total 2080 88.3% 93.8%

As anticipated, the mel cepstral analysis achieved higher word
recognition accuracy (93.8%) than did the cepstral analysis (88.3%). This
result is also confirmed on an individual speaker basis, though the
comparison is quite close for speaker FB. Based on these results, the mel
cepstral analysis technique was selected for fi:rther experiments and was
compared with the DFT and BPF techniques.

Recognition experiments were then conducted for each of the three
analyzers over Data Sets 1 and 2, with manually determined endpoints as
described in Section 5.2. The results of the final comparison are given in
Table 6.2,

The total accuracy over the eight speakers and two vocabulary sets
clearly shows that the BPF technique outperformed the mel cepstral
technique, and that both of these techniques are better than the DFT
technique. It is significant that this rank order is also generally true
on an individual speaker basis. In addition, it is very encouraging that
such high accuracies were obtained in this Ffirst attempt to use OCD
analyzers. For example, the BPF system correctly recognized 97.5% of the
words tested in Data Set 1, and 99.7% of the words tested in Data Set 2.




Table 6.2 DFT, Mel Cepstral, and Bandpass Filter Word Recognition
Accuracy with Manually Determined Endpoints

Mel
Data Set Speaker Trials DFT Cepstrum
1. 26 Word  MA (M) 520 95.8 97.5
Phonetic
_ Vocab. MB (M) 520 92.5 93.8
{
r FA (F) 520 88.5 91.5 92.7
i FB (F) 520 89.4 92.9 99.4
; Sub Total 2080 91.5% 93.9% 97.5%
2. 20 word BB (M) 400 99.0 99.3 100.0 L
Cockpit } ;
Vocab. BL (M) . 400 99.0 99.0 99.5
RS (M) 400 99.8 99.3 99.8 _
WB (F) 400 98.0 99.8 99.5 |
Sub Total 1600 98.9% 99.3% 99.7% A
Total 3680 94, 7% 96. 3% 98.4%
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Note that most of the errors in the BPF trials were attributed to one
female speaker, "FA". All other speakers had recognition rates exceeding
98.8%. Speaker FA also showed the poorest performance with the DFT and
mel cepstral analyzers, although for these devices she was responsible for
a lesser percentage of the total errors. The problems encountered with
speaker FA become clear when listening to her various repetitions of
certain words. She drastically changed her pronunciation of the words
"Adam," "Otto," and "Peter"” on specific repetitions. Such a speaker
demonstrates the need for multiple templates for certain words in order to
enhance recognition accuracy on a given vocabulary.

Since the three speech parameter types (DFT, cepstrum, and BPF) are
considered essentially equivalent in theory, why did their respective word
recognition accuracies vary so consistently? Two explanations are offered.
First, both the DFT and mel cepstral analyzers have considerably lower
frame rates than does the BPF device. Even with variable frame rate
encoding, the BPF system generates about 50 frames per second, compared to
39 frames per second for both the DFT and mel cepstral analyzers.
Secondly, both the DFT and mel cepstral implementations are handicapped by
as much as a 15% error in the COCD generated estimate of the magnitude of
each spectral point. This is a result of the method used in the Reticon
CZT chip for approximating the spectral magnitude.

6.2 A Comparison of LPC and BPF Results

Since the Bandpass Filter was the most effective of the CCD analyzers,
we were interested in how it might compare to an LPC analyzer. Recognition
exper iments were therefore conducted on ITIDCD's PDP-11/60 computer, using
software generated autocorrelation coefficients and resulting LPC
parameters for Data Set 1. The amplitude data which accompanied the
Berkeley generated autocorrelation coefficients was found to be in error.
Consequently, it was necessary to manually determine the word beginnings
and ends on all utterances of Data Set 1. In order to.conduct a fair
compar ison with the BPF analyzer, the word beginnings and ends were
likewise made consistent on Data Set 1 for the BPF parameters. The results
of 2080 recognition trials conducted on each of these data types are
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presented in Table 6.3.

Table 6.3 Word Recognition Results for BPF and
Software Generated LPC with Data Set 1 (2080 Trials)

Analysis Type RAocuracy

BPF 98.5%

LPC 99.5%

A recognition accuracy of 99.5% was achieved on the LPC coefficients,
campared to 98.5% on the BPF. It should be noted that the frame rate on
the software generated LPC coefficients was 100 frames per second, compared
to approximately S50 frames per second on the variable frame rate encoded
BPF parameters. ‘'This difference may explain the higher accuracy of the
similated LPC analyzer.

6.3 Speed/Accuracy Tradeoff Results for the BPF System

The results of the comparison experiments presented in Section 6.1
showed the Bandpass Filter to be the superior COCD analyzer for word
recognition. Therefore, BPF outputs were chosen as the appropriate
parameter base for a study of four speed-up techniques. The speed-up
techniques were designed to reduce data rates, template storage
requirements, and dynamic programming computations. The speed/accuracy

exper iments measured both the degree of speed-up and the accompanying
effect on recognition accuracy.

These experiments were conducted on the BPF parameters of Data Sets 1
anrd 2, the same data used in the comparison experiments of Section 6.1,
where the beginnings and endings of certain utterances had been manually
specified. The bandpass filter results of Table 6.2 serve as a baseline
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for measuring the accuracy tradeoff of various speed-up techniques;

In order to measure the degree of speed up for these techniques, the
number of microcycles required by each ocomponent of the recognition
algorithm was estimated. (On the Quintrell processor, a microcycle is 225
nanoseconds.) A formula was then devised to estimate the number of
microcycles required by the recognition algorithm for each frame of unknown
speech., Assuming 16 bandpass filter coefficients and an average word
length of 25 frames, the devised formula is:

MC =t ( 4860 + (1-d)125¢ - 3200d ) ,

where
MC = number of microcycles per frame of unknown speech
c = number of principal components
t = average number of active templates
4 = percentage of distance calls eliminated by corner pruning

Thus for the baseline BPF camparison experiments on Data Set 1 (Table
6.2), ¢ is 10, t is 26, and d is zero. In this case the formula yields MC
= 159,000 for the number of microcycles per unknown frame. For Data Set 2,
the baseline microcycle count is 122,000, . In the remainder of this
chapter, computational load refers to the percentage of microcycles
required compared to these baseline figures for computational load.

The remainder of this section presents the results of the various
speed-up experiments. The speed-up techniques themselves are described in
Section 2,1.2. At the end of this section, the results are summarized in
qfaphic form for convenient reference.




6.3.1 Variable Frame Rate Encoding

Variable frame rate encoding achieves a reduction in the data rate by
eliminating frames in which there is little change in the bandpass filter
coefficients. Various thresholds for a frame by frame distance metric were
tested to determine the appropriate threshold for cutting the data rate by
approximately 50 percent, from 100 frames per second to 50 frames per
second. The selected threshold was then used with variable frame rate
encoding to generate bandpass filter templates for Data Sets 1, 2, and 3.
Thus variable frame rate encoding was an inherent technique in all bandpass
filter experiments in this study. It alone produced a speed-up factor of

four, as the size of both templates and unknowns are halved. A 50%

reduction in template storage is also achieved by this technique.

No attempt was made to measure the recognition accuracy tradeoff for
variable frame rate encoding. Such a measurement would involve storage
and computational costs beyond the scope of this contract.

6.3.2 Number of Principal Components

Principal component analysis involves a linear transformation which
maps the 16 bandpass filter coefficients into an orthogonal space of the
same or a fewer dimensions. The eigenvectors which are employed in this
transformation are ordered so that the first orthogonal coefficient has the
maximum variance, the second coefficient has the second most variance, and
so on. In this study, a set of eigenvectors is associated with each
repetition of a vocabulary by a given speaker. Thus in Data Sets 1 and 2,
there are five repetitions by eight speakers, resulting in 40 sets of
2igenvectors. For a given eigenvector set, the amount of variance in each
orthogonal dimension can be computed from the eigenvalues. These variances
were averaged over the 40 sets and are presented in Table 6.4, along with
the accumulated variance for successive sets of components.
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l,, Table 6.4 Percentage of Variance Accounted for by Principal
§ Components for BPF Parameters from Data Sets 1 and 2
]
r Principal Variance Cumulative
Component (%) Variance (%)
F‘ il
E 1 58.4 54.4
': 2 15.7 74.1 )
[ T
- ¥
F £
: 3 9.8 83.9 {
i 4 4.4 88.3
: ‘ 5 3.2 91.5
, |
6 2,2 93.7 4
1 1.4 95.1
8 1.1 96,2 .
1
9 - 0.9 97.1 g
\
10 0.7 97.8 ;
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A series of experiments was carried out to measure the effectiveness
of BPF recognition with different numbers of principal components. Ten
principal components had been used in the experiments discussed in Section
6.1. Further experiments were performed using seven, five, and three

principal components on Data Sets 1 and 2. The results are presented in
Table 6.5.

Table 6.5 Word Recognition Results with Varying Principal Components
for BPF Parameters from Data Sets 1 and 2 (3680 Trials)

Number of Recognition  Computational

Components Rate $ Ioad &
10 98.4 100.0
7 98.1 93.6
5 97.8 89.4
3 96.5 85.3

The results indicate that the BPF system degrades only slightly when
using seven principal components. Principal component reduction yields a
modest reduction in computational load. ‘This speed up is attained by
reducing the number of multiplies required in the principal component
linear transformation and by reducing the number of coefficients involved
in the dynamic programming distance metric.

The primary savings of principal component reduction is in storage
required for templates. For example, templates containing five principal
components require only half the storage of templates with ten principal
components.
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6.3.3 Qorner Pruning

Corner pruning is an effective technique for eliminating many frame to
frame comparisons in the dynamic programming algorithm. The corner pruning
bandwidth is defined as the number of horizontal frames to which the
dynamic orogramming alignment path is 1limited. For the baseline
experiments, there was nc such bandwidth 1limitation. Oorner pruning
experiments were desianed and w<orformed on Data Sets 1 and 2 for bandwidths
of 7, 11, 15, and 19 frames. The number of dynamic programming distance
computations was recorded during these experiments so that the
computational load could be accurately measured. The results of these
experiments are presented in Table 6.6,

Table 6.6 Word Recognition Results with Corner Pruning for
BPF Parameters from Data Sets 1 and 2 (3680 Trials)

Corner Pruning Reocognition Computational

Bandwidth Rate % Ioad %
None 98.4 100.0
19 98.3 73.9
15 98.1 65.8
1 97.3 57.2
7 92.9 47.2

The results show corner pruning to be an effective speed up technique
at the proper bandwidth. At a baniwidth of 19 frames, over one quarter of
the computations can be eliminated with almost no decline in accuracy. At

narrower bandwidths, further speed up occurs, but recognition accuracy also
suffers.

If corner pruning is used, recognition errors tend to occur when the
unknown word is spoken at a much faster or slower rate than the appropriate
template for the word. That is, corner pruning errors occur when there is
a significant disparity in length between the unknown and the appropriate
template, in which case the bandwidth 1limitation prevents the proper
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dynamic programming alignment. This disparity is more likely to happen on
longer words. Recognition results might therefore be improved if the
corner pruning bandwidth were varied according to the length of the
template.

6.3.4 Template Pruning

Template pruning is a technique whereby unlikely templates can be
eliminated from the dynamic programming process at some point prior to the
end of the unknown utterance. A template is pruned when its partial match
score exceeds the the best (lowest) partial match score plus a threshold.
Four threshold values were eventually chosen and experiments were conducted
on Data Sets 1 and 2. ‘The number of active (unpruned) templates was
recorded during these experiments so that the reduction in computational
load could be measured. The results of these experiments are presented in
Table 6.7.

Table 6.7 Word Recognition Results with Template Pruning for
BPF Parameters from Data Sets 1 and 2 (3680 Trials)

Template Pruning Recognition Computational

Threshold Rate $ Ioad %
None 98.4 100.0
150 98.4 55.2
100 98.4 41.4
75 98.0 g 33.8

The results show template pruning to be clearly the most powerful
speed-up technique, capable of reducing computations by 60 percent with no
decrease in accuracy. During most recognition trials, only two or three
templates remained active throughout the recognition process.
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f" 6.3.5 Combined Template and Corner Pruning

Termplate and corner pruning proved to be such effective speed-up
techniques that the evaluation of a combination of these techniques seemed
worthy of pursuit. The results of three additional experiments cambining
both template and corner pruning are presented in Table 6.8.

- Table 6.8 Word Recognition Results with Corner and Template Pruning
[‘ for BPF Parameters from Data Sets 1 and 2 (3680 Trials)
t Template Pruning Corner Pruning Recognition Computational
Threshold Bandwidth Rate % Ioad %
None None 98.4 100.0
150 19 98.4 40.8
! 100 19 98.3 30.5
1 100 15 98.0 27.5
The combined pruning results match figures which could have been

predicted from the individual corner and template pruning experiments,
since the reductions in computational load are equivalent to the product of
template pruning reduction and corner pruning reduction. Table 6.8 shows,
for example, that 69.5% of the camputational load can be eliminated with
only 0.1% decrease in recognition accuracy.

6.3.6 Summary of Speec 1/Accuracy Tradeoff Results

A summary of the results obtained in this speed/accuracy tradeoff
study is presented graphically in Figure 6.1, The horizontal dimension
gives the percentage reduction in computational load, as well as the
equivalent speed-up factor, while the vertical dimension shows the added
error. Results are graphed separately for each of the speed-up techniques,

and for two combinations of corner pruning and template pruning. Since the
{ upper right hand corner of the graph represents the most speed-up with the
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least decrease in accuracy, the figure clearly shows that template pruning
is the most effective single speed-up technique. The figure also indicates
that the inclusion of conservative corner pruning further improves overall
performance. While the variable frame rate technique is not graphed in
the figure, it was inherent in all BPF experiments and was responsible for
a speed-up factor of four.

6.4 Additional Word Recognition Results for the BPF system

Because of the superior recognition accuracy shown by the Bandpass
Filter OCD analyzer in the comparisons presented in Section 6.1, it was
decided to gather additional performance statistics on the BPF system. Of
particular interest was the performance of the system with automatically
determined endpoints and wii:h an extended vocabulary.

6.4.1 Results with Automatic Endpoint Detection

The further evaluation of the bandpass filter MR system was
accomplished by conducting additional recognition experiments on Data Sets
1, 2, and 3. Ten principal components were used in all recognition trials.
Corner and template pruning were inoperative. Data Sets 1 and 2 had
already been evaluated in the CCD analyzer camparison experiments with
manually determined endpoints. In these overall performance experiments,
however, endpoint detection was performed automatically by software
algorithm,

The overall performance statistics for the laboratory BPF system with
automatically determined endpoints are presented in Table 6.9. Average
word recognition accuracies of 97.0%, 99.4%, and 98.5% were obtained for
Data Sets 1, 2, and 3.

The results for Data Set 2 show that the contract performance goal (at
least 99% accuracy on a 20 word vocabulary) was surpassed. ‘The slight
discrepancies between these results for Data Sets 1 and 2 and those in
Table 6.2, are due to the differences between manual and automatic endpoint
detection.
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Table 6.9 Bandpass Filter Word Recognition Accuracies with
Automatically Determined Endpoints

Data Set Speaker Trials Accuracy
, 1. 26 Word MA (M) 520 98.17
P Phonetic
' Vocab. MB (M) 520 98.1
b
; FA (F) 520 91.7
|
FB (F) 520 99.4
Sub Total 2080 97.0% !
]
2. 20 wWord BB (M) 400 100.0 “
Cockpit i
Vocab. BL (M) 400 98.5 ! 3
RS (M) 400 99.8 | ]
WB (F) 400 99.5 »
t
Sub Total 1600 . 99.4%
3. 26 word BB (M) 520 98.3 !
Phonetic 3
Vocab. BL (M) 520 99.2 i
i
RS (M) 520 97.9 |
WB (F) 520 98.3
Sub Total 2080 98. 5%
Total 5760 98.2%
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For the phonetic alphabet vocabulary (Data Sets 1 and 3), the most
comonly missed words in these experiments are presented in Table 6.10.
The word "Baker" heads the missed words list, being responsible for a total
of 15 recognition errors from 160 total trials. The overall recognition
rate on this word was still above 90%. "Baker" was missed at least once by
five of the eight speakers. The most cammonly confused words were the
"pavid/Baker" combination. “"David" was recognized as "Baker" ten
different times by four different speakers.

6.4.2 Results with a Larger Vocabulary

In order to assess the performance of the bandpass filter AWR system
on a larger vocabulary, experiments were conducted on the cambined
vocabularies of Data Sets 2 and 3. The merging of these data sets resulted
in a 46 word vocabulary with five repetitions by each of four speakers,
three males and one female. The 46 words include the 26 word phonetic
alphahet 1list and the 20 word cockpit list. For each of the five
repetitions of the resulting 46 word vocabulary by each of the four
speakers, a new principal component matrix was computed.

. Because of data memory limitations in the Quintrell processor, it was
necessary to use only five principal components in the combined vocabulary
experiments. To fairly evaluate the recognition performance on 46 words,
the results must be compared to individual experiments on Data Sets 2 and 3
that were also performed with five principal components. Such an
exper iment had already heen performed on Data Set 2 as one of the principal
component series discussed in Section 6.3.2. A similar experiment therfore
was performed on the 26 word vocabulary of Data Set 3 using five principal
components.

Table 6.11 presents the results for a larger vocabulary. To provide a
convenient reference, the table shows the averaged recognition accuracies
for Data Sets 2 and 3 treated separately. These results are given for both
ten and five principal cumponents, and indicate that reducing the number of
nrincipal components used in the recognition process lowers overall
accuracy by 0.3%. The last row in Table 6.11 shows that 97.7% correct
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l ‘ Table 6.10 Most Commonly Missed Words from the Phonetic Vocabulary of
- Data Sets 1 and 3 (160 Trials per Word, 4160 Total Trials, 96 Total Errors)
Vocabulary Number Number of Confused

word of Misses Speakers with (Times)
Baker 15 5 David  (7)
Edward (6)
Others (2)
David 12 5 Baker (10)

Others (2) ;

Peter 12 3 Union (8) ?

Victor  (4) i

1
Charlie 10 2 John 9)

‘ Others (1) i
] Victor 9 3 Baker {7
] Others (2)
Adam 8 5 Ida (3)

'. X-ray  (3) )

: Others  (2) :

Otto 8 5 Ida (5) !
Others  (3)




recognition resulted for the enlarged 46 word vocabulary. This compares to
98.6% averaged recognition accuracy for the two data sets treated
separately, a decrease of 0.9%.

Table 6.11 Bandpass Filter Word Recognition Results for a Larger
Vocabulary (3680 Trials, No Corner or Template Pruning)

Exper imental Vocabulary Principal  Recognition
Conditions Size(s) Camponents  Accuracy %
Data Sets 2 & 3 Separate; 20 & 26 10 98.9
Results Averaged Words
Data Sets 2 & 3 Separate; 20 & 26 5 98.6
Results Averaged Words
Data Sets 2 & 3 Merged . 46 words 5 97.7

An additional 35 errors occurred over the 3680 trials of the enlarged
vocabulary experiment, It should be noted that only 13 of the 35 errors
were "across vocabularies”, that is,words in the phonetic vocabulary being
confused with words in the cockpit vocabulary, and vice versa. This
indicates that the remaining 22 new errors were the result of the new
principal component matrices computed for this experiment. All of these
matrices were generated from the BPF coefficients of the 46 word vocabulary
and thus provide a linear transformation for a more variable range of
sounds than the principal components matrices derived from the 20 or 26
word vocabularies. Based on these results, we have hypothesized that for a
larger vocabulary, more principal components may be required to achieve the
same level of recognition accuracy.




1 An additional experiment on the same data was performed with ocorner
2 1 pruning and template pruning. The corner pruning bandwidth was set at 19
and the template pruning threshold at 100. A recognition accuracy of 97.3%
was achieved. The drop in accuracy is slight (0.4%), but greater than that
of similar experiments with smaller wvocabularies. The reduction in
computational load is estimated at 75% for this experiment, corresponding
to a speed-up factor of four.
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Chapter 7: PROJECTIONS FOR LOW OOST AUTOMATIC WORD RECOGNITION SYSTEMS

The previous chapters in this report give an affirmative answer to the
question: Can CCD devices be used to generate speech recognition parameters
that are useful for accurate low cost speech recognition? ‘This chapter
addresses a second basic question: what would be the cost for a realtime
AWR system, using a OCD analyzer and current microprocessor technology?

7.1 The Design of a Microprocessor Based AWR System

In order to develop meaningful cost estimates, a low cost
microprocessor architecture was designed to implement the realtime AWR
system discussed in the previous chapters. The system uses speech
parameters generated by the CCD analyzers as input. The microprocessor
architecture was evaluated in terms of cost and complexity for solving
various isolated word recognition problems using three different
microprocessors: the 8-bit Intel 8085A, the 16-bit Motorola MC68000, and a
16-bit configuration of the AMD 290lA. ‘These devices represent three
classes of commonly available microprocessors.

The design analysis presented here is based primarily on a component
analvsis of the realtime Quintrell AWR system. However, since the realtime
system was not completed until late in the contract, speed-up/accuracy
estimates of the corner pruning and template pruning for the microprocessor
study were based on recognition tests performed on the PDP-11/60 AWR system
reported in Chapter 2. These tests indicated that about 60% of the dynamic
programming matrix could be eliminated by corner pruning, and 30% of the
templates could be eliminated by template pruning without significantly
lowering performance. Results for the realtime laboratoryr AWR system
reported in Chapter 6 showed that less of the dynamic programming metrix
could be eliminated by corner pruning, but twice the number of templates
could be be eliminated by template pruning without significantly lowering
{ performance. ‘The net result was a samewhat greater reduction in
camputational load than that reported in Chapter 2. Thus, the results of
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the computational analysis given here for the microprocessor design would
improve somewhat if the newer speed-up/accuracy estimates were
incorporated.

Figure 7.1 shows a block diagram of the camplete microprocessor AWR
system. The system was designed to use the OCD BPF analyzer. This choice,
however, is reflected in the code only by the inclusion of the variable
frame rate encoding algorithm and the principal component transformation.
Only minor changes would have to be made if another COCD analyzer was
selected. For example, the OCD mel cepstral analyzer (as developed for
this study) does not use the variable frame rate énooding algorithm, but
would require a linear transformation based on the mel cosine curves.

There are two modifications in this system relative to the AWR system
used for the evaluation of the OCD BPF analyzer. First, only five
coefficients are produced by the principal' component transformation,
instead of the ten used in the laboratory evaluation. This modification
halves template storage requirements and increases recognition speed. It
was shown in Chapter 6 that using five coefficients rather than ten lowered
the recognition perfom'ame by only 0.5%. The reason for such small
per formance degradation is that the first five coefficients carry about 92%
of the variance of the speech data, and coefficients 6 through 10 include
only about 6% of the variance.

The second modification is to lower the precision of the eigenvectors
in the principal component transformation from 16 bits to 8 bits. This
reduces storage requirements for the matrix and reduces the cost, size, and
power consumption of the mltiplier needed for the principal component
transformation. Though no tests were oconducted in this mode, the
modification should have little effect on the performance of the system
since the eigenvectors serve only as a constant weighting function for the
original 16 coefficients to obtain the reduced set. Bwpirical evidence
indicates that the range of eigenvectors can be adequately represented in
eight bits.
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7.2 Microprocessor Architectures

In determining the suitability of microprocessors for an AWR system,
two different architectures were designed and evaluated. The first divides
the total processing requirements between one master microprocessor and
several slave microprocessors. The second approach uses several
microprocessors that are ganged together in parallel.

The performance estimates for the microprocessors were derived by code
translation from the Quintrell processor assembly language level code for
the laboratory AWR system. The critical areas (distance computation and
the principal component transformation) were translated in detail to the
8085a, MC68000, and 2901A assembly languages. The less critical areas were
estimated by multiplying Quintrell execution times by the ratios obtained
from detailed benchmarks. Approximate throughput ratios relative to the
Quintrell (excluding multiplications) are given for these estimates in
Table 7.1.

Table 7.1 Approximate Throughput Ratios (Excluding Multiplications)
for Several Processors

Processor Throughput Ratio

Quintrell 1.0

8085A 0.1 (8-bit operations)
MC68000 0.45

2901A 1.5

The microprocessors must be augmented with a hardware
multiplier/accumulator to perform the principal component transformation.
The slave processors compute the squaring within the distance calculation
by table lookup. Memory size estimates were obtained from the code
translation and rounded up.
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7.2.1 Master-Slave Architecture

In the first architecture configuration, the two regions outlined in
Figure 7.1 indicate how the processing would be divided between master and
slave microprocessors. The computationally intensive inner 1loop of the
dynamic programming recognition algorithm (the smaller region in Figure
7.1) is performed by a slave processor for several templates in realtime.
The required number of slaves deperds on the number of word templates to be
recognized. In addition, the number of slaves that can be controlled by
one master is 1limited. If a large number of templates are required,
several master-slave systems would work in parallel with the templates
distributed equally amongst them. The OCD analyzer output is distributed
to all processors simultaneously. Figuré 7.2 shows this architecture.

The master-slave architecture was evaluated for the Intel 8085A and
the Motorala MC68000 microprocessors. Figure 7.3 presents a block diagram
of the 8085A architecture configuration. The master processor consists of
an 8085A CPU, 2 K bytes of PRIM program memory, 4 K bytes of RAM memory for
template storage (20 templates) and working area, a USART for serial
comunications, and interrupt control and bus interface circuitry. It is
assumed that the master processor generates the timing for the system. The
serial I/0 is for communicating the recognition results and other data to
(or from) a TTY, CRT, host processor, or other compatible device.

The slave processors are simpler. Each slave consists of an 8085A
CPU, a 1.5 K byte program memory, and 1 K byte RAM memory for template
storage and working space. Each slave processor can handle just ower two
templates in realtime, and each master processor can handle 10 slave
processors. '

Each master processor is assumed to have 10 miscellaneous SSI and MSI

components, which are not shown in the figure. Each slave processor is is
assumed to have five miscellaneous SSI and MSI components.
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Communication between master and slaves is initiated by interrupts,
with each slave processor having a dedicated interrupt in the master.
Communication is between master and slaves only, that is, there is no
direct interchange between slave processors.

Figure 7.4 is a block diagram of the Motorola MC68000 architecture
configuration. ‘The elements of the master and slave processors are very
similar to that in the 8085A implementation. The memory sizes are somewhat
larger because the processing capacity is greater — each slave can process
10 templates in realtime, compared to two for the 8085A. Communication in
this architecture is the same as in the B8085A implementation.

7.2.2 Ganged Architecture

The second architecture that was investigated employs the more
powerful AMD 2901A in a bit slice configuration. 'The processing capacity
of the 290l1A is such that a master-slave subdivision would not be
appropriate for vocabularies of up to several hundred words. If many word
templates are needed, a number of processors are ganged together as shown
in Figure 7.5, and the templates are divided amongst them. During
recognition, the CCD outputs are distributed to all processors
simultaneously. At the end of the utterance, Processor 1 makes the final
recognition decision based on its own results and on those of the other
processors. This final decision does not add significant camputational
load for the vocabulary sizes considered. Figure 7.6 illustrates the
architecture configuration for one 2901A microprocessor. The design has
separate program and data memory, a hardware multiplier/accumulator (8-bit
by 8-bit), and a 290l1A oconnected in a 16-bit configuration. The high
throughput capacity allows each processor to compare 38 templates in
realtime,
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F: 7.2.3 Special Purpose Hardware

Anoilher consideration for the development of a low cost AWR system is
A whether certain functions could be performed more economically with special
i 1 purpose hardware. ‘The master-slave architecture was examined to
investigate this possibility for the ™minimm" function in the dynamic
programming algorithm. It was determined that special purpose hardware
using MSI components would not be effective in this situation, because the
number of additional camponents required would not be offset by a
sufficient increase in throughput.

An LSI implementation of the "minimum" function could be cost
effective in high volumes. This might be especially true if it
incorporated other features, such as the capability to add the distance to
the selected minimum value. Custom LSI implementations of special purpose
hardware, however, were felt to be beyond the scope of this & analysis and
were therefore not pursued further.

7.3 Oost Analysis for a Microprocessor AWR System

To determine cost projections for a microprocessor AWR system, :

estimates must be made for both the COCD analyzers and the microprocessor i

implementations. Such projections are more difficult for the COCD j

¥ analyzers, since new LSI chips would most likely need to be developed. }’

Cost estimates for *he microprocessor portion of the AWR system are more
reliable because standard components were used in the design.

7.3.1 CCD Analyzer Hardware Costs ‘]
1 There is very limited data on which to base OCD cost estimates.

Reticon currently markets a line of CCD analog processing chips, two types
y of which were used in the speech analyzers for this study. The

apia

o RTINS IS L

DFT/Cepstral analyzer is based on a single chip Chirp-Z transformer
(R5601), and the Bandpass Filter analyzer is constructed with. six third-
octave filter chips (R5604) and a single octave chip filter chip (R5606) .
Texas Instruments is developing a single chip version of a complete filter
hank, including rectifiers, low pass filters and multiplexed A/D. Dr.
nroderson at Berkely has also projected the feasibility of single ) chip
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‘ autocorrelator which ocould be used with a single chip microprocessor to
perform LPC anaylsis. To estimate the cost of future OCD speech analyzers,
therefore, we have assumed that appropriate single chip OCD devices would
be available for each type of analyzer, and have based their costs on the
current 100 quantity selling price of Reticon chips of approximately equal
camplexity. Specifically excluded from the these estimates are the costs
for chip development, which could easily exceed several hundred thousand f
dollars per device.

Table 7.2 summarizes the OCD analyzer cost projections. It shows that
each of the four analyzer types has a $300 OCD chip as the main processing
component, along with hardware to perform .analog preemphasis and anti-
aliasing. The LPC analyzer also includes a $45 single chip microprocessor.
In addition, the LPC, DFT, and Cepstral analyzers contain a $10 A/D or 1log
A/D chip. Quantity projections for total costs ramge from $306 for the BPF
analyzer, to $361 for the LPC analyzer. These differences are probably
insignificant given the assumptions on which the estimates are based. What

: is significant, however, is the fact that high quality speech analyzers
‘ using CCD components should be available in the future for only several
hundered dollars.

K 7.3.2 Microprocessor Hardware Costs

The microprocessors and architectures were compared by cost and

camplexity for recognition tasks with different numbers of word templates.

The results are based on an average length template of 0.6 seconds (i.e. 30

frames after variable frame rate encoding; the word "frequency" is

typically about 0.6 seconds long). The results also reflect the goal that

{ processing is done in realtime, so that the identity of a spoken utterance
; is available as soon as the end of the utterance is detected.

The cost estimates are based on the cost of IC's plus $1.00 per watt
to cover power supply costs. IC's were priced from current vendor quotes
in quantities of 100. The cost estimates do not include packaging,
testing, and related tasks, because these factors are highly dependent on

{ quantity, the efficiency of the manufacturer, environmental requirements,
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and other conditions.

Table 7.3 shows a comparison of the three architecture configurations
for three vocabulary sizes, assuming 60% corner pruning and no template
pruning. The 8085A is clearly the least efficient. The B085A approach is
not cost effective because each slave can only handle two templates in
realtime. The resulting large number of CPU's requires replication of

program memory. Also, use of data memory is less efficient and many

components are needed for interprocessor communication. With less
effective corner pruning, as the Quintrell experiments suggest, each slave
can handle only one template, and this design becomes even less attractive.

The 68000 and 2901A cost comparison is fairly close. A clear
advantage of the 2901A implementation is that there is no master/slave
partitioning. The communication between master and slave processors is in
two directions and involves establishing bus control and command and data
interchange. The 2901A processors simply report recognition results at the
end of an utterance. Program development cost, documentation, testing, and
maintenance should be simpler for the single CPU design of the 2901A,

The same basic recognition hardware can process more vocabulary
templates by taking advantage of template pruning. For example, 30%
template pruning enables the effective vocabulary size to be increased by
30%, with only a small increase in hardware cost due to the requirement for
additional template storage memory. Table 7.4 shows the results of
combining 60% corner pruning with 30% template pruning for the more
attractive MC68000 and 2901A designs. Somewhat better results would be
obtained if the speed-up/accuracy estimates from the Quintrell experiments
vere used. “hile corner pruning was less effective in those experiments,
the additional template pruning more than compensated, yielding a net
improvement in speed-up/accuracy performance.

Another method for increasing the number of templates that can be
processed by the same basic hardware is to relax the requirement for
realtime response. For example, a 0.6 second recognition response time
doubles the amount of processing time avaiable, and therefore doubles the
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Table 7.3 Cost Comparison of Three Microprocessor Devices for a
Realtime AWR System (60% Corner Pruning; No Template Pruning)

Intel 8085A Motorola MC 68000 AMD 2901 A

Vocabulary IC's M S § IC's M 8§ §$ |IC's P $
Size

20 135 1 10 1084 50 1 2 780 80 1 895
100 675 5 50 5420|194 1 10 2674} 249 3 3050
300 2025 15 150 16260| 582 3 30 8022 671 8 8412

M = Number of Master Processors
S = Number of Slave Processors
P = Number of Processors

Table 7.4 Microprocessor Cost Projections for a Realtime AWR
System with 30% Template Pruning (and 60% Corner Pruning)

Motorola MC 68000 AMD 2901 A
Vocabulary
Size IC's M S $ IC's P $
26 56 1 2 849 82 1 976
130 224 1 10 2915 255 3 3294
390 672 3 30 8745 688 8 9104

Table 7.5 Microprocessor Cost Projections for an AWR System with
a 0. 6 Second Response Time (60% Corner Pruning; 30% Template Pruning)

Motorola MC 68000 AMD 2901 A
Vocabulary
Size IC's M S $ IC's P $
52 76 1 2 1076 87 1 1178
260 346 1 10 4395 270 3 3900
780 1038 3 30 13185 768 8 12344




vocabulary size of a given system. In some applications of an AWR, such a
delay in response would not be prohibitive. It should be noted, however,
that this method also requires a corresponding increase in template storage
memory which increases the overall cost of the system by a small amount.
The net result of permitting a 0.6 second delayed response and increasing
the cost of template storage memory is shown in Table 7.5. With the 2901a,

such a relaxation of response time allows the vocabulary size to be
doubled, with only a 20% - 30% resulting increase in cost.

7.4 Overall AWR Cost Projections

Based on the preceding analysis, Table 7.6 presents a summary of the
overall cost projections for a microprocessor AWR system with a CCD speech
analyzer. The table contains data for the CCD Bandpass Filter analyzer,
which performed better than the DFT and Cepstral analyzers in realtime
laboratory tests. It also uses the cost projections for the 290l1A
microprocessor design with a 0.6 second response time, the configuration
that appears to be the most attractive for the wvocabulary sizes being
considered. As Table 7.6 indicates, hardware costs for a complete system
should range between about $1,500 for a 52 word vocabulary, to about
$12,700 for a 780 word vocabulary.
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Table 7.6 Overall Cost Projections for a Microprocessor
AWR System with a OCD Speech Analyzer
Vocabulary OCD BPF 2901Aa Total Hardware
Size Analyzer Microprocessor Cost
52 $306 $1,178 $1,484
260 $306 $3,900 $4,206
780 $306 $12,344 $12,650 g
H
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Chapter 8: CONCLUSIONS AND RECOMMENDATIONS

During this study, ITIDCD evaluated the feasibility of using Charge
Coupled Devices (CCD'S) and microprocessors to reduce the cost and
complexity of Automatic Word Recognition (AWR) systems. ‘Three speech
analysis techniques were implemented using currently available CCD
hardware. These included a Bandpass Filter (BPF) analyzer, a Discrete
Fourier Transform (DFT) analyzer, and a Cepstral analyzer. For each of
these OCD analyzers, software was developed to make the respective speech
parameters more suitable for realtime word recognition. ITTDCD then
incorporated the CCD hardware and software into a realtime laboratory AWR
system and employed this system in a performance comparison of the three
CCD based speech analysis techniques. The laboratory AWR system was
further used as a test vehicle for experiments measuring the effectiveness
of various word recognition speed-up methods. Finally, ITTDCD designed and
evaluated architectures for microprocessor based versions of the realtime
AWR system and formulated cost projections for such systems.

ITTDCD he: drawn a number of conclusions from these development
activities and associated experimental results. The major conclusions are
discussed in the following section, while recamendations for future

investigations are presented in Section 8.2.
8.1 Conclusions

The major conclusion that has resulted from this study is that a
combination of COCD devices and microprocessors can provide an effective,
low cost Automatic Word Recognizer. Details supporting this conclusion are
summar ized below.

1. CCD speech analyzers can provide speech parameters which are
useful for accurate word recognition in realtime. Recognition
accuracies exceeding 99% can be achieved on a 20 word vocabelar_y.
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2. Of the OCD speech analysis techniques compared, the Bandpass
Filter analyzer provides the best parameters for isolated word
recognition. Over 3680 trials, the BPF analyzer produced less than
half as many recognition errors as the second best technique, the
mel cepstrum analyzer. Futhermore, the BPF analyzer achieved a
higher recognition accuracy than the other CCD analyzers for seven
of the eight speakers used in the comparison experiments.

3. The second best CCD analyzer, the mel cepstrum technique, was
clearly superior to the third CCD analyzer, the DFT.

4. Mel cepstral analysis is superior to cepstral analysis as‘ a

word recognition technique.

5. All four of the speed-up algorithms which were studied are
worthwhile applications for an efficient realtime AWR system.

a. Variable frame rate encoding is an integral part of the
BPF technique and provides significant data rate and
template storage reductions.

b. Template pruning is a powerful speed-up technique, -
capable of reducing recognition computations by 60 percent
with no decline in recognition accuracy.

c. Principal component reduction provides template storage
savings and a modest computational speed-up.

d. Corner pruning is an effective speed-up technique which
can lower computations by 25% with little loss in accuracy.

6. Of the three microprocessor architectures evaluated as
potential low cost MWR systems, the Intel 8085A approach is clearly
the least efficient and least cost effective. While the AMD 2901A
and Mototola MC68000 desi~ns are comparable from a cost standpoint,
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, the 2901A is preferable from a performance standpoint, particularly
- 1 with regard to throughput and simplicity.

7. Hardware cost projections for an AWR system featuring an AMD
2901A architecture and a Bandpass Filter OCD analyzer should range
between $1,500 for a 52 word vocabulary, to about $12,700 for a 780
word vocabulary. These oosts do not include custom chip
development, detailed hardware design, construction or testing.

8.2 Recommendations for Future Investigations

ITIDCD recognizes that niany aspects of CCD analyzer and microprocessor
based AWR systems are deserving of further research and development. These
aspects include additional improvements to the AWR algorithms themselves,
the development and customer evaluation of a deliverable low cost AWR
system, and the extension of the AWR algorithms and hardware design to a
continuous speech recognition system.

Certain algorithms employed in the word recognition process might be i
refined through further experimentation and analysis. Among these are
algorithms for detection of word boundaries (beginnings and ends) and for
variable frame rate encoding. Principal component matrices (eigenvectors) I
deserve further study with respect to the number of camponents versus |
vocabulary size. The possibility of a speaker independent principal
component transformation for a specific vocabulary should also be explored. .
In addition, better methods for generating vocabulary templates should be
developed that utilize clustering and averaging techniques. These methods
) should result in less sensitivity to inter- and intra-speaker variablility

-y n

in the pronunciation of the vocahulary words.

Since such encouraging results were obtained with respect to word
recognition accuracy ard hardware cost projections, we  recommend the
development of a deliverable AWR system that is based on the ideas
formulated and tested here. To proceed with such a development, the AWR

{ system characteristics would have to be specified with respect to
vocabulary size, vocabulary subsetting, accuracy, and response time. Then
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1 2 a detailed system design would be completed and the AWR system constructed
and tested at the ITIDCD laboratory. This system could be delivered to the
% ‘ Air Force for additional testing and evaluation in an Air Force laboratory
1 or operational environment.

. Another promising area for further activity is the application of the
low cost AWR hardware and software concepts to the problem of recognizing
natural continuous speech. Recent experiments at ITTDCD have shown that ~
the dynamic approach to word matching can effectively locate words embedded
in conversational speech, without requiring the words to be separated by
.pauses. These general concepts could be extended and enhanced for
continuous speech recognition to properly handle word boundary
coarticulation and other variablility effects. The OCD analyzers,
microprocessor architectures, and dynamic programming software should :
significantly improve the prospects for accurate and affordable continuous i
speech recognition systems. .
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